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Analysis of Coupled Inset Dielectric Guides Under
LSE and LSM Polarization

Steve R. Pennock, Member, IEEE, Dragan M. Boskovic, Member, IEEE, and Tullio Rozzi, Fellow, IEEE

Abstract—The inset dielectric guide (IDG) represents an easy-
to-fabricate alternative to image line that is also less sensitive
to loss by radiation at discontinuities. Two IDG’s geometries
were analyzed, the so-called deep and shallow IDG structures,
operating in the LSE and LSM polarization, respectively. The
propagation constants of single and coupled symmetrical IDG’s
have been calculated as well as the coupling coefficients of cou-
pled guides. The Transverse Resonance Diffraction (TRD)
method with variational formulation was used. Measured val-
ues show very good agreement with predicted values for the
propagation constants of coupled deep slot IDG’s. This infor-
mation is a prerequisite for the design of directional couplers
in IDG.

I. INTRODUCTION

HE INSET DIELECTRIC GUIDE (IDG) shown in

Fig. 1(a), has been proposed [1] as an alternative me-
dia to the image [2}, Fig. 1(b), and insular [3], Fig. 1(c),
varieties of dielectric based waveguides. IDG possesses
advantages over these guides in terms of its ability to guide
energy around relatively sharp bends with low radiation
loss {4] and simple manufacture. Sharp bends naturally
arise in circuits as higher circuit densities are considered,
and in terms of its manufacture, this simple structure could
be lightweight and cheap to mass produce through the use
of plastic moulding and spray metallization techniques. It
has also been seen that thin dipoles placed on the dielec-
tric surface can be used to produce low mismatch, low
cross-polarization antennas in IDG [5]-[7].

The modes of the IDG structure shown in Fig. 1(a) are
hybrid in general, having three electric and three mag-
netic components. However, the deep and shallow slot
configurations give rise to a great simplification in anal-
ysis. In fact, for a deep slot, the E; component is small
and the fields are approximately LSE [7], [8], while in a
shallow slot H, is small and the LSM approximation be-
comes apparent [6], [7]. It is under the assumption of pure
LSE and LSM polarization that the analysis in this paper
is performed, and verified by comparison with experi-
ment. Choosing LSE/LSM five component field descrip-
tion rather than full six field hybrid gives a useful reduc-
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Fig. 1. Three types of dielectric surface waveguides. (a) Inset dielectric
guide. (b) Image guide. (c) Insular guide.
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Fig. 3. Network representation of the integral operator equations under (a)
LSE and (b) LSM polarizations.

tion in the size of the final matrix, and consequently faster
computation.

In this paper we analyze the coupled IDG structure
shown in Fig. 2 using the space domain Transverse Res-
onance Diffraction technique. This leads to the equivalent
circuit representation in Fig. 3, where we have chosen to
cast our analysis along the x direction. The obvious mod-
ifications of this cross-section, apart from the thickness of
the spacing, are reductions in spacing height and the ad-
dition of a slot within the spacing. These modifications

0018-9480/92803.00 © 1992 IEEE



PENNOCK et al.: ANALYSIS OF COUPLED INSET DIELECTRIC GUIDES

yield a method of controlling the coupling and dispersion
characteristics of the lines.

We have limited ourselves to analyzing the coupling of
identical IDG’s in terms of even and odd excitation modes
in this paper. However, the same TRD approach can be
used for the analysis of non-identical IDG’s, or even, for
the characterization of multiple IDG arrays.

II. TRD FORMULATION AND NETWORK MODELING

The entire cross section is divided into three different
regions as shown in Fig. 2, 'and the metal edges will be
treated as discontinuities separating the regions. In each
homogeneous part of the structure the propagation con-
stants are linked by the relationship:

ek; = kI +k2+ B2 ()]
where @ is the z directed propagation constant, common
for all regions, which is to be determined.

Considering the propagation in the x direction of the
LSE®” or LSM(” modes, continuum modes are excited at
each step discontinuity. In addition multiple reflection of
the modes occur between the two steps. Thus region II
can be no longer be represented by a few discrete trans-
mission lines in any rigorous network representation. In
fact, in order to analyze such a region, electric and mag-
netic walls are placed at x = d/2 andx = d/2 + a,ina
manner analogous to the determination of the impedance
or admittance parameters of a 2N-port network by open
and short circuit ports. Integral operators are then found
relating the total E and H fields at the various ports under
these ‘‘open’” and ‘‘short circuit’” conditions, and these
are used to relate the total fields at each port to one an-
other. Such an analysis follows closely the method de-
scribed in [9], [10].

From such an analysis, we can express the transverse
electric and magnetic fields on the first step as functions
of the transverse electric and magnetic field on the second
step and vice versa. Choosing a y directed field compo-
nent as an independent variable, the above dependence
can be expressed by means of a ‘‘two-port’” Green’s open-
circuit impedance operator for the case of LSE polariza-
tion, or an admittance operator for the case of LSM po-
larization. This two-port circuit representation of region
IT will be terminated with impedance or admittance op-
erators representing the driving point impedance, or ad-
mittance, of region I and III, thus completing the repre-
sentation of the entire structure.

A. LSE Polarization

For the LSE” modes we use the H, field as the un-
known variable in our formulation, and the corresponding
circuit representation is given in Fig. 3(a). The operator
equations that link E, and H, at the two interfaces x; =
d/2 and x, = d/2 + a can be written in matrix form:

[—Ez(xl‘,y)} _ I:_Zle,o 0} . [Hy(xf,y)] 2
~E,(x3, y) 0 zl LH&,p

917

[Ezur,y)} _ [le le} . {Hy(xr, y>J 5
E (%, ) Zy Zy Hy(x; , y)

where the dot product should be understood in the sense
of operator multiplication. For example in (2) we have

and

Ez(xl_’ y) = SO Zle,a(y’ y’)Hy(xls }")dY'

= Zle,o ' Hy(xl_a }’) (4)

and the explicit form of the operator is derived in Section
III.

Introducing the boundary conditions for electric and
magnetic fields at the discontinuity planes in (2) and (3)
results in

[0} _ {Zu = Zieo Zp J ) [Hy(xla J’)} 5)
0 Zp Zy + 273 H,(x;, y)

This represents an operator formulation of the TRD dis-
persion equation which must be solved in order to-obtain

solutions for the propagation constants of the even and
odd modes.

B. LSM Polarization

When considering shallow slot IDG’s we approximate
using a LSM®? potential, and the TRD analysis is devel-
oped using E, as the unknown. This determines admit-
tance integral operators linking the E, and H, components
at the discontinuity planes. The equivalent circuit repre-
sentation for this LSM case is shown in Fig. 3(b) and the
relevant matrix form of TRD dispersion equation is

{0] _ [(yu - ‘yle,o Y, } . {Ey(xu)’)} ©)
0 Y, Y + Y, E,(x;, y)

HI. VARIATIONAL FORMULATION OF IMPEDANCE
OPERATORS

We now derive the impedance operator equations under
LSE polarization for each of the three regions separately.
The LSM polarization admittance operators are given in
Appendix I.

A. Region I
Magnetic wall at x = 0, or even mode

The expressions for the field components transverse to
x under LSE polarization are

> k; 2
E,(x,y) = SO dp V(p)ﬁf;

- cos (ky,x) \/% sin ( py) )
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1 [~ 2
Hy(x,y) = — S do V(o) Vi3, + 63\[—
Jopo Jo ™

+ sin (ky,x) \/% sin ( py). (8)

The elimination of the amplitude V( p) gives an integral
operator equation for the driving point impedance at the
x; = d/2 plane with a magnetic wall at the x = O plane:

2

- (" d
E(x;,y = SO dy So dp z,, cot <kxp —2—> ;

2 _
* sin (py) \/; sin (py YH,(x(,y) 9

E (i, y) = Zy, - Hy(x(, ) (10)
Zlfe = S: dp z,, cot <kxp g) %

* sin (py) \/% sin (py") 1D

b (12)

2oy = jw o a——
o — JOHO k,ch T 33

Electric wall at x = 0, or odd mode
The transverse components, for the case when an elec-
tric wall is located at the x = O plane, have the form:

® k; 2
E(x,y) = SO dp V(p) \/k?p—_}‘_-ﬁg\/;
xp 0

- sin (k,,x) \/% sin ( py)

(13)
-1 (° 2
Hy, ) = — S do V(0)ViE T Bi\ﬁ
Jwpo Jo T
2
+ cos (k%) \/; sin ( py). (14)

The integral operator linking the two transverse field
components in this case is

® d\ |2 . 2
—_ So dp z,, tan <k,m 5)\/;sm(py)\/;

- sin (py’)

k)qo
Zop = JWHo T3 —53- (16)
g k2, + B2

Zl,o

15)

B. Region I1

We now establish a relationship between the fields at
x1=d/2 and x, = a + d/2, which describes the effect
of the finite length of the slab waveguide between the
steps. When a magnetic wall is placed at x, the transverse
electric field E, (x;, y) excited by H,(x{, y) is

Ez(xr’ )’) = le ’ Hy(xr’ }’)

Nsw

17

Zy = kgl 7 cot (kya) P () P (¥')
+ go dp z, cot (k,a)®(p, P (p, ")
(18)
. kxk

% = —jonoz @
k ] Ho k_ik + 6;0

ke 0

Z, = —JjWpo T3 a3 (19
2 k2, + B2,

where N,,, stands for total number of surface waves sup-
ported by the grounded dielectric slab. Expression (18) is
the operator form of the driving point impedance of an
open-circuit stub. Moreover, under the same boundary
conditions, we have

Ez(x1+, }’) = ZlZ ) Hy(XZ-’ Y)

where Z, is determined from Z;; by replacing the cot
function with the csc function.

When a magnetic wall is placed at x,, H, (x{", y) is zero,
and then symmetry and reciprocity give

E(y,y) =2y - Hix;, y)
Ez(x2_’ )’) = ZlZ * Hy(xrs }’)

The function ®,(y) and ®,(y, p) are the well known
scalar mode functions for the TE surface continuous waves
of a grounded slab guide [5].

(20

e2))

(22)

C. Region HI1

This region was treated as half open space region, and
the field expressions are

* L 1
xp e,0

. 2
. exp'ﬂ‘*"Jt \ﬁ sin ( py)
T

1 ®©
Hy(xa .V) = 3 S dp V(p) Vk.%p + Bg.o
Jwpg Jo

—jkxpx 2 :
- exp T |~ sin (py)
T

23)
L
Var

24
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Finding the inverse transformation of (24) and substitut-

ing into (23) gives an integral equation for the driving
point impedance at the plane x, = d /2 + a:

(" 2 2 |
|, z,,\ﬁsin(pw\ﬁsin(py') 5)
0 3 ™

k

(26)

Zy

xp
2, = Wpo T 55—
? kxp + 68,0

IV. DiscrRETIZATION AND CHOICE OF Basis FUNCTIONS

In order to solve the dispersion operator equations (5)
and (6), they must first be discretized. The equation is
discretized by transforming it into a function space which
is spanned by the set of functions used to expand the un-
known fields. As the same numerical approach is used for
discretizing both operator equations, the procedure used
will be described using a unified notation. [n order to do
o, the operator equations are written as

[0} _ |:A11 — A, Ap ] _ {XI:' on
0] LA Ay + Ay X,

where A = Z in the LSE case and A = 9 in the LSM
case. The above equation has nontrivial solutions when

det liAll - Ale,o AlZ jl =0
Ay, Ay + As

This is the dispersion equation which is solved to de-
termine even and odd mode propagation constants.

The approach used here was the Ritz—Galerkin method,
where the unknown field functions are written in terms of
a suitable set of basis functions. The problem has been
formulated so that only one set of basis functions is used
for both of the singular unknown field quantities, which
improves both efficiency and accuracy. The unknown field
possesses singularities at the 90° metal edges which occur
in the IDG structure, of the order r~!/3 where r is a dis-
tance from the corner [11]. Thus, an appropriate complete
set of basis functions is provided by the generalized La-
-guerre polynomial, whose weight function fits the re-
quired singularity at the metal corners and which are ex-
pressed mathematically as

1 . y -1/3
(yoa)'/? <—>
,Nm—l Yoa@

(2%

L (y) =

< exp /e LTV} <yia> 29)
with the orthogonality relationship [12]:
SO Su(y) X L0 < ;f—) dy = Npy_y by (30)
and normalization constant N, _ given as
N:_ = I'em —1/3) 31)

(m— D!
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The arbitrary scale parameter y, can be adjusted so as
to optimize convergence. To determine y, we define an
error function (32) which represents a measure of com-
pleteness of the basis function set for the discrete modes
of a grounded slab dielectric waveguide:

Serror (¥os N, freq, €,, a, h)
NSW

N .
=2 <|l SaDI* = 2 1< 2a(), £n(3)) ||2>.

(32)

For the geometry considered here, we can expand the
modes of region I and region II on the first discontinuity
plane, and modes of region II and region III on the second
discontinuity plane, using the same basis functions. The
transformer coefficients are given by

x©

Pmp = (TI,S’ £m> = SO dy Tl,3(p: y)"em(y) (33)

[=]

A = Ty, £, = So ay To (M £y 34

(=]

Amp = <T27 £m> = SO d)’ T2(p’ y)£’m(y) (35)
where T is the scalar mode function of the region consid-
ered. Using (29) as a basis set the rectangular N, X N
transformer matrix, A, for discrete modes and P( p) and
A(p), 1 X N vectors for the continuous mode are estab-
lished. The discretized operators are defined as

A= So dp P"(p)N\,1.3P(p) (36)
Niw
A = ngl A Na1, nA
+ SO dp AT()Np11,12A( p) (37

The numerical complexity of the semi-infinite integrals
is increased by the fact that A, possesses a singularity for
p = ko. Thus the integration comprises a principal value
estimation.

The resulting N X N matrices can be interpreted as
impedances or admittances of an ordinary N port, which
approximates the field problem in the Ritz-Galerkin sense
and is amenable to ordinary network analysis.

V. NUMERICAL AND EXPERIMENTAL RESULTS

A. Numerical Results

The optimum value of y, was determined by searching
for the global minimum of (32). This scale factor is im-
portant in terms of achieving fast convergence and high
accuracy and example values for two different IDG ge-
ometries are given in Table I. By introducing y, into the
basis set only 4 to 5 terms in expansion were sufficient in
the cases examined here. The optimization of y, requires
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TABLE I
COMPUTED VALUES FOR SCALE CONSTANTS UNDER LSE AND LSM
POLARIZATION FOR DEEP AND SHALLOW IDG GEOMETRY (NUMBER
oF Basis FUNCTION = 5)

Freq. GHz 8 9 10 11 12
Yo LSE deep 0.627 0.492 0.407 0.349 0.306
Yo LSE shallow 0.906 0.447 0.301 0.229 0.186
Yo LSM shallow 0.213 0.179 0.155 0.137 0.122
TABLE II

CONVERGENCE TEST FOR THE LSEy; MODE PROPAGATION CONSTANT IN A
DEeEP SLoT IDG, AND COMPARISON WITH MEASURED DATA (THE IDG 1S
FILLED WITH PTFE AND OF DIMENSIONS 10.16 mm X 15.24 mm)

Freq. GHz 7. 9 11 13
N=3 162.32 224.56 285.77 346.34
N=4 163.54 227.65 291.91 355.13
N=5 163.50 228.28 293.18 357.15
Meas. 160.1 230.3 293.9 357.4

little CPU time, and typically took 0.5 s of CPU time on
a HP9000-845 machine.

The convergence behavior of the analysis is shown in
Table II for several frequencies in the monomode oper-
ating range of a single IDG line. These tests show that
solutions are stable to less than 0.5% using only five basis
functions iit the expansion set for the unknown field. Such
a degree of accuracy does probably exceed the precision
to which the permittivity of the IDG filling is known, and
so might be thought of as being excessive. However, the
properties of coupled IDG lines rely on the relatively small
difference between the phase constants of the even and
odd modes. Consequently, high accuracy is needed to
evaluate this difference and we have used five or six func-
tions in the coupled line computations shown in this pa-
pér. The CPU time taken to evaluate each phase constant
was about 1.5 min on our HP9000-845, most of which is
caused by evaluating the determinant function about 12
times.

B. Computation of Field Components

Having solved the dispersion equation (27) for even and
odd modes, the phase constants 3, , for both modes are
known and the amplitude coefficients for the basis set are
found by placing the phase constant back into operators
and solving the eigenvalue equation:

A’ _ Allc - Ale,o AlZc
A Ay Aje + As

X
X,

The amplitude coeflicients of the field amplitudes can
then be evaluated enabling the field componeits to be cal-
culated separately for all three regions. The 3-D plots for
even and odd H, in the air region over coupled IDG lines
under LSE polarization are shown in Fig. 4. At the two
discontinuity planes, the edge condition requires that x
and y directed field components show singular behavior.

(38)

Fig. 4. H, field pattern for odd and even mode of coupled deep IDG’s.
Guide dimensions are 10.16 X 15.24 mm filled with PTFE and separated
by 2.0 mm. The dashed lines mark interfaces between the three regions
depicted in Fig. 2.

From the plots it is apparent that edge influence is stronger
on the second discontinuity plane. The presence of mag-
netic wall, for the even mode case, close to the slot edge
strongly reduces the field spike.

C. Phase Constant Measurements

The phase constants of the coupled IDG lines were
measured by terminating a length of coupled IDG lines at
both ends and then introducing weak coupling magnetic
loop probes near these ends. Power transmission through
this sttucture shows resonant peaks when the interceding
transmission path is an integral number of half wave-
lengths long, and so we can determine phase constants at
discrete frequencies. Accuracy is improved by reducing
the peak transmission magnitude, and this can be con-
trolled through the separation between the probe and the
IDG. In addition, probe orientation facilitates relatively
independent excitation of even and odd symmetry modes,
allowing discrimination between fundamental and higher
order modes of the single lines and between even and odd

- modes of the coupled lines.

The deep IDG structures tested here have a slot w1dth
of 10.16 mm, a depth of 15.24 mm, and are filled with
PTFE, while the shallow structures were 22.86 mm wide
and 10.16 mm deep. Considering the deep slot IDG, the
comparison between experiment, full six-field hybrid
mode calculation [8], and our LSE approximation, is made
in Fig. 5. While phase constant data is required to char-
acterize signal propagation (e.g. coupling effects, delay
etc.), we show the effective permittivity in order to make
any differences between data more apparent. The differ-
ence between the LSE approximation and experimentally
determined phase constant is greatest at frequencies ap-
proaching cut-off, and lies in the range of 1.3% to 0.5%
of the theoretical value.
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Fig. 5. Dispersion characteristic of single deep 10.16 x 15.24 mm IDG
filled with PTFE.
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Fig. 6. Dispersion characteristic of single shallow 22.86 X 10.16 mm IDG
filled with PTFE.

Fig. 6 shows the comparison between experiment and
theory for a shallow slot guide for frequencies between 8
GHz and 14 GHz. LSM analysis of the structure shows
the existence of an LSM,;; mode, but by applying the LSE
analysis we find two additional modes, the LSE,; and
LSEy, modes. Experimental data show that the guide does
indeed support two propagating modes in this frequency
range. The difference in phase constant between experi-
ment and calculation lies in the range 1.7%-0.75%. It has
been suggested [8] that the LSM,,, modes can approxi-
mate the EH,,, hybrid modes, while the LSE,,, mode can
approximate the HE,,, hybrid mode. As we can see from
our data, this is a reasonable approach, allowing fairly
accurate prediction of the phase constants and modal
structure from the LSE/LSM analysis. Monomode oper-
ation of a shallow IDG can be achieved by making width/
height ratio large enough, for the LSM;; to emerge as the
fundamental mode of the structure.

Computed and measured data for the case of coupled
lines with a separation of 0.47 mm are compared in Fig.
7, and agreement is very good for both the even and odd
modes. Theoretical and measured phase constants differ
by between 0.7% and 0.15%. The comparison for a sep-

921

17
= -
S 16+
-
2
G 15
Q
0
'S 14
3
.% 1.3 o
o m  elLSE, measured
> 104
2 © oLSE, measured
£ eLSE,, calculated
5oL
i —---- oLSE, calculated
10 r T r , .
6 7 1l 12

8 9 1
frequency (GHz)

Fig. 7. Dispersion characteristic of deep coupled IDG’s for both even(e)
and odd(o) modes. Guide dimensions are 10.16 X 15.24 mm filled with
PTFE and separate by 0.47 mm.

TABLE III
COMPUTED AND MEASURED VALUES FOR 3 OF COUPLED IDG’s DIMENSIONS
1.016 X 1.524, FILLED WITH PTFE AND SEPARATED BY d = 1.7 mm

Freq. Be BY B Bz
8 197.49 198.1 202.86 203.1
9 228.56 230.0 233.42 234.3
10 260.41 260.9 264.76 265.4
11 292.77 292.2 296.18 296.2
12 324.06 323.8 326.41 326.6

aration of 1.7 mm is presented in Table III where the even
and odd mode phase constants differ by between 3% and
0.7% . In using a five function basis we have kept the error
between calculated and measured data between 0.3% and
0.08%, i.e., about one tenth of the difference in even and
odd mode phase constants.

D. Coupling Effects

Using a dielectric taper inside the metal rectangular
waveguide as a transition section into a single deep slot
IDG, a return loss in the region of —20 dB is observed
over the entire X band frequency range [8]. The charac-
teristics of a 25 cm long coupled section with a separation
of 1.7 mm were measured using an HP8510 network ana-
lyzer, with the remaining coupler ports matched. The
coupled IDG section was seen to perform as a forward
coupler with return loss and isolation better than —20 dB
[13]. From these results, we can see that the coupler can
be approximated very well by assuming perfect isolation
and port matching, in which case the coupling can be cal-
culated very simply from:

[1Si31l = 10 x log <sin2 <§i@5_~§9@ X L>> (39)

To examine the dependence of coupling on separation
and of the filling material permittivity, we have plotted
the coupling per coupled guide wavelength against guide
separation in Fig. 8. The upper line designated IDG;, is
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Fig. 8. Coupling characteristics for deep slot LSE, mode and shallow slot
LSM,, mode versus guide separation at 9 GHz. Dimensions for IDG, are
10.16 x 15.24 filled with PTFE (¢, = 2.08). Dimensions of IDG, were
3.24 X 4,86 mm and dielectric filling was ¢, = 10.8. Shallow slot was
PTFE filled and 22.86 X 10.16 mm.
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Fig. 9. Dispersion characteristics of coupled shallow 22.86 x 10.16 mm
IDG filled with PTFE. Calculations are for both even(e) and odd(o) modes,
and for both LSE and LSM polarizations.

for the PTFE filled guides we have considered so far,
while IDG, refers to a guide filled with a higher permit-
tivity material. This second example has a smaller cross
section so that comparison is made for coupled lines with
equal operating frequency bands. By this we mean that
both structures have the same cut-off frequencies for the
fundamental and first higher order pairs of modes, about
6 GHz and 14 GHz, respectively. Clearly the higher per-
mittivity filling acts to concentrate the fields within the
slot and reduce the coupling effect. Consequently, in ap-
plications where coupling is to be avoided, smaller IDG’s
filled with a high permittivity material should be used.
Such an application might be the implementation of par-
allel sets of radiating dipoles in a two dimensional array
antennas. The reduction in guide size facilitates the
avoidance of grating lobes, while the coupling could be
reduced to negligible levels, greatly simplifying analysis
and design.

The dispersion characteristics for the LSM;; and LSE,
modes of 0.5 mm spaced shallow IDG’s are presented in

Fig. 9. The coupling is much greater for the LSM;; mode
than for the LSE; mode of the same shallow IDG. The
coupling characteristic for the LSM;; mode is also shown
in Fig. 8 for comparison with the deep slot data. Clearly
for small guide separations the coupling is much stronger
in the shallow slots, while for separations of d = 0.08 A,
the coupling factors are quite similar.

VI. CoNcLUsION

We have described the accurate analysis of coupled
IDG’s under LSE and LSM polarizations. The conver-
gence of the analysis has been demonstrated to be good,
typically needing only 5 terms to provide the 4 figure ac-
curacy needed to describe coupling properly. Good agree-
ment with experimentally measured data for the deep slot
case has also been demonstrated. Some of the features of
IDG directional couplers have been illustrated showing
good isolation/directivity and port matching characteris-
tics.

The analysis presented here can be applied to the design
of directional couplers, coupled line bandpass filters and
two dimensional array antennas in IDG. Consequently,
power splitting and filtering operations can now be in-
cluded in the same IDG circuit media as the antenna, thus
providing a complete front end sub-assembly. Further
work is being undertaken at present towards this aim.

APPENDIX |
ADMITTANCE OPERATORS FOR LSM POLARIZATION
A. Region |
Even mode
Hz(x;’ y) = (yle ) E_v(x1_7 y) (40)
* d\ |2
(1:'1,6 = SO dp yep tan <kxp 5) _7;
2 !
* cos (py) - o8 (py") 1)
Odd Mode
= d
(yl,o = o dp Yoo tan kxp E
2 . 2 . ,
© = sin(py) [ sin (py") 42)
s s
where
. kxﬂ
Ve, 00 = JWE m 43)
B. Region Il

When an electric wall is placed at x, = a + d/2 the
transverse magnetic field H,(x{", y) excited by E, C2Y)
is
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Hz(xr, )’) = (yll * Ey(xrs }’)
Nsw
Y = 2 e cot (k@) ¥ ( 1) Yar(¥)
+ SO dp y, cot (k, ¥ (o, ¥ (p,y")
45)
L
Yoo = —j ; (46)

Jwe 75 2 -
kxk + :8 e,0
This expression is the operator form of the driving point

admittance of a short-circuit stub. Moreover, under the
same boundary conditions, we have

Hz(xr, }’) = (y12 ' Ey(xZ_’ Y) (47)

where Y, is determined from (45) by replacing the cot
function with csc function. ,
The two remaining parameters are determined, as in the
LSE case, by the conditions of reciprocity and symmetry.
The functions ¥, (y) and ¥,(y, p) are the well-known
expressions for the TM surface wave of grounded slab
guide, [14].

C. Region 1II

oo 2 2 ‘
Y; = S dp y, \ﬁ cos (py) \ﬁ cos (py') (48)
0 T T
ko 49
A “

APPENDIX 11
The coefficient P,, has been defined as

o -1/3
P,,,,,=S - <y> e /e U

0 Nm‘l Yoa \Yo@
2 { sin (py)
z > (50)
T {_cos (py)

where upper terms in brackets refer to LSE and lower to
LSM polarization.
From [15] the solution of integral is found as

1 |2aT@m-1/3) (oy,0)" "
Np-1 N7y, (m = DU 1+ (py,a)’ 1%~ /2

P,, =

sin
X { }[(m - D7a/2 + @m—1/3)

Cos

+ arctg (py,a)). (51

Same procedure as above is employed in order to get
expressions for transformer coefficients of continuum
mode of region II:

923

(oyo®)" "
[1+ (pyoa) 1% D72

1 2a T'(m —1/3)
Nm—l Yo (m"' 1)'

Apy =

sinfa’ + (m — Dr/2 + (m — 1/3)
- arctg (py,a)]
cos[a” + (m— Dx/2 + (m— 1/3)
+ arctg (py,a)l
(52)

The transformer coefficients for discrete mode of region
II integral given by (34) had to be solved. From [16] so-
lution is found as

4= 1 a4 |Tm—1/3)
" Nuo 1 \NYo (A7) (m = 1)
vi ml
o Yot
Y
k/ m—1/3. (53)
Yk
1+ Vo0
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