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Abstract—The inset dielectric guide (IDG) represents an easy- mDielectric 1 DAir

to-fabricate alternative to image line that is also less sensitive
to loss by radiation at discontinuities. Two IDG’s geometries

=Dielectric 2 mMetal

were analvzed. the so-called deep and shallow IDG structures, -OxU - — —
operating-in the LSE and LSM polarization, respectively. The
propagation constants of single and coupled symmetrical IDG’s
have been calculated as well as the coupling coefficients of cou-
pled guides. The Transverse Resonance Diffraction (TRD)

method with variational formulation was used. Measured val-

ues show very good agreement with predicted values for the
propagation constants of coupled deep slot IDG’s. This infor-

mation is a prerequisite for the design of directional couplers

in IDG.

I. INTRODUCTION

T HE INSET DIELECTRIC GUIDE (IDG) shown in

Fig. 1(a), has been proposed [1] as an alternative me-

dia to the image [2], Fig. l(b), and insular [3], Fig. 1(c),

varieties of dielectric based waveguides. IDG possesses

advantages over these guides in terms of its ability to guide

energy around relatively sharp bends with low radiation

loss [4] and simple manufacture. Sharp bends naturally

arise in circuits as higher circuit densities are considered,

and in terms of its manufacture, this simple structure could

be lightweight and cheap to mass produce through the use

of plastic moulding and spray metallization techniques. It

has also been seen that thin dipoles placed on the dielec-

tric surface can be used to produce low mismatch, low

cross-polarization antennas in IDG [5]-[7].

The modes of the IDG structure shown in Fig. 1(a) are

hybrid ‘in general, having three electric and three mag-

netic components, However, the deep and shallow slot

configurations give rise to a great simplification in anal-

ysis. In fact, for a deep slot, the Ey component is small

and the fields are approximately LSE [7], [8], while in a

shallow slot Hy is small and the LSM approximation be-

comes apparent [6], [7]. It is under the assumption of pure
LSE and LSM polarization that the analysis in this paper

is performed, and verified by comparison with experi-

ment. Choosing LSE/LSM five component field descrip-

tion rather than full six field hybrid gives a useful reduc-
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Fig. 1. Three types of dielectric surface waveguides. (a)
guide. (b) Image guide. (c) Insular guide.
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Fig. 2. Coupled symmetric IDG’s.
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Fig. 3. Network representation of the integral operator equations under (a)

LSE and (b) LSM polarizations.

tion in the size of the final matrix, and consequently faster

computation.

In this paper we analyze the coupled IDG structure

shown in Fig. 2 using the space domain Transverse Res-

onance Diffraction technique. This leads to the equivalent

circuit representation in Fig. 3, where we have chosen to

cast our analysis along the x direction. The obvious mod-

ifications of this cross-section, apart from the thickness of

the spacing, are reductions in spacing height and the ad-

dition of a slot within the spacing. These modifications
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yield a method of controlling the coupling and dispersion

characteristics of the lines.

We have limited ourselves to analyzing the coupling of

identical IDG’s in terms of even and odd excitation modes

in this paper. However, the same TRD approach can be

used for the analysis of non-identical IDG’s, or even, for

the characterization of multiple IDG arrays.

II. TRD FORMULATION AND NETWORK MODELING

The entire cross section is divided into three different

regions as shown in Fig. 2, ‘and the metal edges will be

treated as discontinuities separating the regions. In each

homogeneous part of the structure the propagation con-

stants are linked by the relationship:

where @ is the z directed propagation constant, common

for all regions, which is to be determined.

Considering the propagation in the x direction of the

LSE(’) or LSM(’) modes, continuum modes are excited at

each step discontinuity. In addition multiple reflection of

the modes occur between the two steps. Thus region II

can be no longer be represented by a few discrete trans-

mission lines in any rigorous network representation, In

fact, in order to analyze such a region, electric and mag-

netic walls are placed at x = d/2 and x = di2 + a, in a

manner analogous to the determination of the impedance

or admittance parameters of a 2N-port network by open

and short circuit ports. Integral operators are then found

relating the total E and H fields at the various ports under

these “open” and “short circuit” conditions, and these

are used to relate the total fields at each port to one an-

other. Such an analysis follows closely the method de-

scribed in [9], [10].

From such an analysis, we can express the transverse

electric and magnetic fields on the first step as functions

of the transverse electric and magnetic field on the second

step and vice versa. Choosing a y directed field compo-

nent as an independent variable, the above dependence

can be expressed by means of a “two-port” lGreen7s open-

circuit impedance operator for the case of ILSE polariza-

tion, or an admittance operator for the case of LSM po-

larization. This two-port circuit representation of region

II will be terminated with impedance or admittance op-

erators representing the driving point impedance, or ad-

mittance, of region I and III, thus completing the repre-

sentation of the entire structure.

A. LSE Polarization

For the LSE(’) modes we use the Hy field as the un-

known variable in our formulation, and the corresponding

circuit representation is given in Fig. 3(a). The operator

equations that link EZ and Hy at the two interfaces xl =

d/2 and Xz = d/2 + a can be written in matrix form:

and

Hy (X:, y)

1

(3)
Hy (.x;, y)

where the dot product should be understood in the sense

of operator multiplication. For example in (2) we have

J
co

E, (X;, y) = 21.,. (Y, Y’)Hy(~l, y’) dy’
o.

= Zle,o - HY(x; , y) (4)

and the explicit form of the operator is derived in Section

III.

Introducing the boundary conditions for electric and

magnetic fields at the discontinuity planes in (2) and (3)

results in

This represents an operator formulation of the TRD dis-

persion equation which must be solved in order to obtain

solutions for the propagation constants of the even and

odd modes.

B. LSikl Polarization

When considering shallow slot IDG’s we approximate

using a LSM(’) potential, and the TRD analysis is devel-

oped using Ey as the unknown. This determines admit-

tance integral operators linking the Ey and HZ components

at the discontinuity planes. The equivalent circuit repre-

sentation for this LSM case is shown in Fig. 3(b) and the

relevant matrix form of TRD dispersion equation is

[1[o = Yll – Yle,o ‘Y1*

o Y12 Y1,+YJ”[;RI1 “)

III. VARIATIONAL FORMULATION OF IMPEDANCE

OPERATORS

We now derive the impedance operator equations under

LSE polarization for each of the three regions separately.

The LSM polarization admittance operators are given in

Appendix I.

A. Region I

Magnetic wall at x = O, or even mode

The expressions for the field components transverse to

x under LSE polarization are

J k
E, (X, y) = :

[

2

“’V(P)* ~

“ COS (kXpx)
J_

~ sin ( Py) (7)
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~

I@
Hy(.x, y) = —

[
dpv(p)m :

jcopo o

. sin (lq.ox)
J

~ sin ( ,oy). (8)

The elimination of the amplitude V(p) gives an integral

operator equation for the driving point impedance at the

xl = d/2 plane with a magnetic wall at the x = O plane:

Jz sin ( py’ )lZY(xC, Y)o sin ( py) ~ (9)

E,(.x; , y) = Z,. “ ~y(X; , y) (lo)

0 sin ( py)
J

~ sin ( py’ ) (11)

kw
Z,p

‘J@pOk:P + /?:’
(12)

Electric wall at x = O, or odd mode

The transverse components, for the case when an elec-

tric wall is located at the x = O plane, have the form:

o sin (kXPx)
[

~ sin ( py) (13)

~

–1 m
Hy(x, y) = —

J
dp V(p)- :

jqq o

The integral operator linking the two transverse field

components in this case is

“ sin ( py’ ) (15)

(16)

B. Region II

We now establish a relationship between the fields at

xl= d/2 and X2 = a + d/2, which describes the effect

of the finite length of the slab waveguide between the

steps. When a magnetic wall is placed at X2 the transverse

electric field EZ(x:, y) excited by HY (x:, y) is

E,(x:, y) = Zll “ ~y(X:, y) (17)

sco

+ dp ZP cot (kxPa) @(p, Y)@(P, Y’)
o

(18)

(19)

where N,W stands for total number of surface waves sup-

ported by the grounded dielectric slab. Expression (18) is

the operator form of the driving point impedance of an

open-circuit stub. Moreover, under the same boundary

conditions, we have

E,(x:, y) = .32 “ ~y(X; , y) (20)

where Z12 is determined from Z11 by replacing the cot

function with the csc function.
When a magnetic wall is placed at xl, HY (xi, Y) is zero,

and then symmetry and reciprocity give

EZ(x~, y) = Zll - ~y(X;, y) (21)

EZ(X; , y) = Zlz - ~y(X:, y). (22)

The function Ok(y) and @o( y, p) are the well known

scalar mode functions for the TE surface continuous waves

of a grounded slab guide [5].

C. Region III

This region was treated as half open space region, and

the field expressions are

“ exp ‘ik’p’
J

~ sin ( py)

!lm
Hy(x, y) = –-

J(d/@ O ‘p ‘(p) ‘k;” + 62’0 &

“ exp ‘jk’” x
J

~ sin ( py)

(23)

(24)
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Finding the inverse transformation of (24) andsubstitut-

ing into (23) gives an integral equation for the driving

point impedance at the plane Xz = d/2 + a:

(26)

IV. DISCRETIZATION AND CHOICE OF BASILS FUNCTIONS

In order to solve the dispersion operator equations (5)

and (6), they must first be discretized. The equation is

discretized by transforming it into a function space which

is spanned by the set of functions used to expand the un-

known fields. As the same numerical approach is used for

discretizing both operator equations, the procedure used

will be described using a unified notation. [n order to do

so, the operator equations are written as

[1 [o All – Ale,o A12

1“[1

x,
O = A12

(27)
All + Aa X2

where A = Z in the LSE case and A = ~j in the LSM

case. The above equation has nontrivial solutions when

[

All – A1,,O A,z
det 1=A12

o.
All + As

(28)

This is the dispersion equation which is solved to de-

termine even and odd mode propagation constants.

The approach used here was the Ritz-Galerkin method,

where the unknown field functions are written in terms of

a suitable set of basis functions. The problem has been

formulated so that only one set of basis functions is used

for both of the singular unknown field quantities, which

improves both efficiency and accuracy. The unknown field

possesses singula~ties at the 90° metal edges which occur

in the IDG structure, of the order r – l/3 where r is a dis-

tance from the corner [11], Thus, an appropriate complete

set of basis functions is provided by the generalized La-

guerre polynomial, whose weight function fits the re-

quired singularity at the metal corners and which are ex-

pressed mathematically as

()
-1/3

Q.(y) = —~l_l (yea)-”2 &
m

“ exp ‘y/yea L; ~/~

()

~
(29)

yOa

with the orthogonality relationship [12]:

!
co

&m(y) x L’;:f
()

~ dy = iVm_l 6mti
o yOa

(30)

and normalization constant N~ – 1 given as

r(ln – 1/3)

‘;-l= (m– 1)! “
(31)
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The arbitra~ scale parameter yO can be adjusted so as

to optimize convergence. To determine yO we define an

error function (32) which represents a measure of com-

pleteness of the basis function set for the discrete modes

of a grounded slab dielectric waveguide:

.t.~.r( y., N, freq, c,, a, h)

NW

( )=p,ll*dk(Y)112 -5, Il(%k(”y), J%(y)) 112.

(32)

For the geometry considered here, we can expand the

modes of region I and region H on the first discontinuity

plane, and modes of region II and region III on the second

discontinuity plane, using the same basis functions. The

transformer coefficients are given by

i
Pmp = (T1,3, Sm) = : dy T,,3(p, y).&(y) (33)

!
m

Am = (T’k, Ccm) = o dy T2k(Y)J3m(Y) (34)

!

m

A.P = (T2, .&) = dyl’z(p,y)sm(y) (35)
o

where ‘T is the scalar mode function of the region consid-

ered. Using (29) as a basis set the rectangular N~W x N

transformer matrix, A, for discrete modes and P(p) and

A( p), 1 X N vectors for the continuous mode are estab-
lished. The discretized opera }rs are defined as

P) &1,3p( P) (36)

12A

+ 10 dp AT(p) ~pll,lzA(p) (37)

The numerical complexity of the semi-infinite integrals

is increased by the fact that & possesses a singularity for

p = ko. Thus the integration comprises a principal value

estimation.

The resulting N x N matrices can be interpreted as

impedances or admittances of an ordinary N port, which

approximates the field problem in the Ritz-Galerkin sense

and is amenable to ordinary network analysis.

V, NUMERICAL AND EXPERIMENTAL RESULTS

A. Numerical Results

The optimum value of yO was determined by searching
for the global minimum of (32). This scale factor is im-

portant in terms of achieving fast convergence and high

accuracy and example values for two different IDG ge-

ometries are given in Table 1. By introducing yO into the

basis set only 4 to 5 terms in expansion were sufficient in

the cases examined here. The optimization of yO requires
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TABLE I

COMPUTED VALUES FOR SCALE’CONSTANTS UNDER LSE AND LSM
POLARIZATION FOR DEEP AND SHALLOW IDG GEOMETRY (NUMBER

OF EIASIS FUNCTION = 5)

Freq. GHz 8 9 10 11 12

y. LSE deep 0.627 0.492 0.407 0.349 0.306

y. LSE shallow 0.906 0.447 0.301 0.229 0.186

y. LSM shallow 0.213 0.179 0.155 0.137 0.122

TABLE II

CONVERGENCE TEST FORTHE LSEOI MODE PROPAGATION CONSTANT IN A

DEEP SLOT IDG, AND COMPARISON WITH MEASURED DATA (THE IDG IS
FILLED WITH PTFE AND OF DIMENSIONS 10.16 mm x 15.24 mm)

Freq. GHz 7 9 11 13

N=3 162.32 224.56 285.77 346.34

N=4 163.54 227.65 291.91 355.13

N=5 163.50 228.28 293.18 357.15

Meas. 160.1 230.3 293.9 357.4

little CPU time, and typically took 0.5 s of CPU time on

a HP9000-845 machine.

The convergence behavior of the analysis is shown in

Table II for several frequencies in the monomode oper-

ating range of a single IDG line. These tests show that

solutions are stable to less than 0.5% using only five basis

functions in the expansion set for the unknown field. Such

a degree of accuracy does probably exceed the precision

to which the permittivity of the IDG filling is known, and

so might be thought of as being excessive. However, the

properties of coupled IDG lines rely on the relatively small

difference between the phase constants of the even and

odd modes. Consequently, high accuracy is needed to

evaluate this difference and we have used five or six func-

tions in the coupled line computations shown in this pa-

per. The CPU time taken to evaluate each phase constant

was about 1.5 min on our HP9000-845, most of which is

caused by evaluating the determinant function about 12

times.

B. Computation of Field Components

Having solved the dispersion equation (27) for even and

odd modes, the phase constants @c,~ for both modes are

known and the amplitude coefficients for the basis set are
found by placing the phase constant back into operators

and solving the eigenvalue equation:

A A,lC – A1.,O AIZC x,
— .

A = A12C A1lC + Aj X2
(38)

The amplitude coefficients of the field amplitudes can

then be evaluated enabling the field components to be cal-

culated separately for all three regions. The 3-D plots for

even and odd HY in the air region over coupled IDG lines

under LSE polarization are shown in Fig. 4. At the two

discontinuity planes, the edge condition requires that x

and y directed field components show singular behavior.
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Fig. 4. H,, field pattern for odd and even mode of coupled deep IDG’s.

Guide dimensions are 10.16 X 15.24 mm filled with PTFE and separated
by 2.0 mm. The dashed lines mark interfaces between the three regions
depicted in Fig. 2.

From the plots it is apparent that edge influence is stronger

on the second discontinuity plane. The presence of mag-

netic wall, for the even mode case, close to the slot edge

strongly reduces the field spike.

C. Phase Constant Measurements

The phase constants of the coupled IDG lines were

measured by terminating a length of coupled IDG lines at

both ends and then introducing weak coupling magnetic

loop probes near these ends. Power transmission through

this structure shows resonant peaks when the interceding

transmission path is an integral number of half wave-

lengths long, and so we can determine phase constants at

discrete frequencies. Accuracy is improved by reducing

the peak transmission magnitude, and this can be con-

trolled through the separation between the probe and the

IDG. In addition, probe orientation facilitates relatively

independent excitation of even and odd symmetry modes,

allowing discrimination between fundamental and higher

order modes of the single lines and between even and odd

modes of the coupled lines.

The deep IDG structures tested here have a slot width

of 10.16 mm, a depth of 15.24 mm, and are filled with
PTFE, while the shallow structures were 22.86 mm wide

and 10.16 mm deep. Considering the deep slot IDG, the

comparison between experiment, full six-field hybrid

mode calculation [8], and our LSE approximation, is made

in Fig. 5. While phase constant data is required to char-

acterize signal propagation (e. g. coupling effects, delay

etc. ), we show the effective permittivity in order to make

any differences between data more apparent. The differ-

ence between the LSE approximation and experimentally

determined phase constant is greatest at frequencies ap-

proaching cut-off, and lies in the range of 1.3% to 0.5 %

of the theoretical value.
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Fig. 6. Dispersion characteristic of single shallow 22.86 x 10.16 mm IDG

filled with PTFE.

Fig. 6 shows the comparison between experiment and

theory for a shallow slot guide for frequencies between 8

GHz and 14 GHz. LSkf analysis of the structure shows

the existence of an LSMI ~ mode, but by applying the LSE

analysis we find two additional modes, tlhe LSEOI and

LSEOZ modes. Experimental data show that the guide does

indeed support two propagating modes in this frequency

range. The difference in phase constant between experi-

ment and calculation lies in the range 1.7%--O. 75 %. It has

been suggested [8] that the LSM~. modes can approxi-

mate the EH~. hybrid modes, while the LSE~. mode can

approximate the HE~. hybrid mode. As we; can see from

our data, this is a reasonable approach, allowing fairly

accurate prediction of the phase constants and modal

structure from the LSE/LSM analysis. Monomode oper-

ation of a shallow IDG can be achieved by making width/

height ratio large enough, for the LSMI, to emerge as the
fundamental mode of the structure.

Computed and measured data for the case of coupled

lines with a separation of 0.47 mm are compared in Fig.

7, and agreement is very good for both the even and odd

modes. Theoretical and measured phase constants differ

by between 0.7% and 0.15 %. The comparison for a sep-

. .~.-
* 1.6-cJ m

/.”
0 /. El-

5 l.5-
V ,.U”
0 ,0’

.~ 1.4- ,A7

I ,/’
.+ 1.3- P
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J

6 7
t?equenly (GHJ

11 12

Fig. 7. Dispersion characteristic of deep coupled IDG’s for both even(e)

and odd(o) modes. Guide dimensions are 10.16 x 15.24 mm tilled with

PTFE and separate by 0.47 mm.

TABLE III
COMPUTED AND MEASURED VALUES FORD OF COUPLED IDG’s DIMENSIONS

1.016 x 1.524, FILLED WITH PTFE AND SEPARATED BY d = 1.7 mm

8 197.49 198.1 202.86 203.1
9 228.56 230.0 233.42 234.3

10 260.41 260.9 264.76 265.4
11 292.77 292.2 296.18 296.2
12 324.06 323.8 326.41 326.6

aration of 1.7 mm is presented in Table III where the even

and odd mode phase constants differ by between 3 % and

0.7 %. In using a five function basis we have kept the error

between calculated and measured data between 0.3 % and

0.08 %, i.e., about one tenth of the difference in even and

odd mode phase constants.

D. Coupling Effects

Using a dielectric taper inside the metal rectangular

waveguide as a transition section into a single deep slot

IDG, a return loss in the region of – 20 dB is observed

over the entire X band frequency range [8]. The charac-

teristics of a 25 cm long coupled section with a separation

of 1.7 mm were measured using an HP8510 network ana-

lyzer, with the remaining coupler ports matched. The

coupled IDG section was seen to perform as a forward

coupler with return loss and isolation better than – 20 dB

[13]. From these results, we can see that the coupler can

be approximated very well by assuming perfect isolation

and port matching, in which case the coupling can be cal-

culated very simply from:

(( o ))llSlq II = 10 x log sin2 “en ~ ‘odd x L . (39)

To examine the dependence of coupling on separation

and of the filling material permittivity, we have plotted

the coupling per coupled guide wavelength against guide

separation in Fig. 8. The upper line designated IDG1 is
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Fig. 8. Coupling characteristics for deep slot LSEO, mode and shallow slot

LSMI, mode versus guide separation at 9 GHz. Dimensions for IDGl are

10.16 x 15.24 filled with PTFE (ej- = 2.08). Dimensions of IDG~ were
3.24 x 4.86 mm and dielectric filling was c, = 10.8. Shallow slot was
PTFE filled and 22.86 X 10.16 mm.

~ 1.9
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+!+ OLSE1, calculated
~
~ 1.8 -e+ eLSEO1calculated
o
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9 10 13
fre~uency (~Hz)
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Fig. 9. Dispersion characteristics of coupled shallow 22.86 x 10.16 mm
IDG filled with PTFE. Calculations are for both even(e) and odd(o) modes,

and for both LSE and LSM polarizations.

for the PTFE filled guides we have considered so far,

while IDG2 refers to a guide filled with a higher perrnit-

tivity material. This second example has a smaller cross

section so that comparison is made for coupled lines with

equal operating frequency bands. By this we mean that

both structures have the same cut-off frequencies for the

fundamental and first higher order pairs of modes, about

6 GHz and 14 GHz, respectively. Clearly the higher per-

mittivity filling acts to concentrate the fields within the

slot and reduce the coupling effect. Consequently, in ap-

plications where coupling is to be avoided, smaller IDG’s

filled with a high permittivity material should be used.

Such an application might be the implementation of par-

allel sets of radiating dipoles in a two dimensional array

antennas. The reduction in guide size facilitates the

avoidance of grating lobes, while the coupling could be
reduced to negligible levels, greatly simplifying analysis

and design.

The dispersion characteristics for the LSMI, and LSEOI

modes of 0.5 mm spaced shallow IDG’s are presented in

Fig. 9. The coupling is much greater for the LSMI, mode

than for the LSEOI mode of the same shallow IDG. The

coupling characteristic for the LSM 11mode is also shown

in Fig. 8 for comparison with the deep slot data. Clearly

for small guide separations the coupling is much stronger

in the shallow slots, while for separations of d > 0.08 &

the coupling factors are quite similar.

VI. CONCLUSION

We have described the accurate analysis of coupled

IDG’s under LSE and LSM polarizations. The conver-

gence of the analysis has been demonstrated to be good,

typically needing only 5 terms to provide the 4 figure ac-

curacy needed to describe coupling properly. Good agree-

ment with experimentally measured data for the deep slot

case has also been demonstrated. Some of the features of

IDG directional couplers have been illustrated showing

good isolation/directivity and port matching characteris-

tics.

The analysis presented here can be applied to the design

of directional couplers, coupled line bandpass filters and

two dimensional array antennas in IDG. Consequently,

power splitting and filtering operations can now be in-

cluded in the same IDG circuit media as the antenna, thus

providing a complete front end sub-assembly. Further

work is being undertaken at present towards this aim.

APPENDIX I

ADMITTANCE OPERATORS FOR LSM POLARIZATION

A. Region I

Even mode

H,(x; , y) = WI, . EY(x:, y)

~

m

Yl,e =
( )1

d2
dp Y,P tan k,o j ;

o

“ Cos ( py) J:Cos ( py’ )

Odd Mode

i

03

Yl,o =
()

d
dp Y*P tan k. ~

o

‘Jsin’f’y’$in
where

(40)

(41)

(42)

(43)

B. Region II

When an electric wall is placed at Xz = a + d/2 the

transverse magnetic field HZ (x(, y) excited by EV(xF, y)

is
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1
A—

J

2a r(m – 1/3) (fJYo@m-’
w = N~-l 7ry0 (m - 1)! [1 + (pyOa)2](2rn- *)/2N,.

Yll = ~g, Yk cot (k!d~dk( Y)*dk( y’ )

[

sin [u’ + (m – l)m/2 + (m – 1/3)

o arctg ( PyOa)]
x

1

Cos [a” + (m – l) T/2 + (m – 1/3) “

o arctg ( py.a)]

(52)

J
w

+ dp y, cot (kXpa)* (p, y)~(~, Y’)
o

(45)

‘x(k,P)
yk,p = –jw ~

kX~ + P;,. ”
(46)

The transformer coefficients for discrete mode of region

II integral given by (34) had to be solved. From [16] so-

lution is found as

This expression is the operator form of the driving point

admittance of a short-circuit stub. Moreover., under the

same boundary conditions, we have

H,(x:, y) = y~~ “ .EY(x; , y) (47)
1

&k = —

[[J

a 4 I’(m – 1/3)

N.- I i A: (m - l.)!

{}

7[
m—l

yOa
?’!

(53)

{}

m–1/3”

1 + 7; yOa
71

where Y 12 is determined from (45) by replacing the cot

function with csc function.

The two remaining parameters are determined, as in the

LSE case, by the conditions of reciprocity and symmetry.

The functions T~ ( y) and Vp ( y, p) are the well-known

expressions for the TM surface wave of grounded slab

guide, [14].

C. Region III
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